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Abstract:

Our focus in this research is to developed block method for solving higher order ordinary differential equation

using power series on implicit one-step. In order to achieve the aim and objective of this research, we used
interpolation, collocation and evaluate a power series approximation at some chosen grid and off-grid points to
generate an implicit continuous hybrid one-step method. As requirement of any numerical analyst, the properties of
one-step block method was done and results showed that it is consistent, convergent, zero stable and with region of
absolutely stable. The method was tested with numerical examples solved using the existing methods and our
method was found to give better results when compared with the existing method. Obviously, the solution graphs
show the convergence of the method with exact solutions.
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Introduction

Most of the problems in science, mathematical physics and
engineering are formulated by differential equations. The
solution of differential equations is a significant part to
develop the various modeling in science and engineering.
There are many analytical methods for finding the solution of
ordinary differential equations. But a few numbers of
differential equations have analytic solutions where a large
numbers of differential equations have no analytic solutions.
In recent years, mathematical modeling of processes in
biology, physics and medicine, particular in dynamic
problems, cooling of a body and simple harmonic motion has
led to significant scientific advances both in mathematics and
biosciences (Brauer & Chavez, 2012, Elazzouzi et al., 2019).
A differential equation can be classified into ordinary
differential equation (ODE), partial differential equation
(PDE), stochastic differential equation (SDE), impulsive
differential equation (IDE), delay differential equation (DDE),
etc. (Stuart & Humphries 1996).

In recent times, the integration of Ordinary Differential
Equations (ODEs) is investigated using some kind of block
methods. We consider the solution of equation in the form;

y'=f(x v,y y(X0)= Yoo ¥ (%))=Y 01)

Literature has shown that many numerical problems can be
modeled into problem (1.1). Though the conventional method
for modeling (1.1) is by reducing it tosystem of first order
ordinary differential equations. Over the years, different
numerical methods have been developed in order to model the
solution of equation (1.1). Among these methods are block
method, linear multistep method, hybrid method and Rung-
Kutta method, (Lambert 1973, Gear 1966, 1971& 1978,
Suleiman, 1979& 1989). Recently, some scholars have been
made an effort to develop hybrid block method for solving
(1.1) directly, among others are Kuboye & Omar (2015),
Omar & Abdelrahim (2016), Abdelrahim & Omar (2016),
Alkasassbeh & Omar (2017), Skwame et al. (2019a, 2019b &
2020).

In literature, some scholars such as Omar (1999) and Olabode
(2007) proposed block methods for solving higher order
ordinary differential equations directly without reduction to a
systems of first order ODEs. Abdelraim et al. (2019),
Moammad & Omar (2017), Omar & Alkasassbeh (2016),
Abdelrahim & Omar (2016) have proposed one-step block
hybrid method for the direct solution of second order ordinary
differential equationand yield at a good results, their work
motivate us to propose block method for solving higher order
ordinary differential equation using power series on implicit
one-step.

Materials and Method
We consider a power series approximate solution in the form:
p+q—1

y(x)= J_Z:;a,- x!

where Pand (are number of distinct interpolation and

collocation, respectively.
Differentiating ((2.1) twice, yield
p+a-1

2 i(i-1a, X
j=0

(2.2)
Substituting (2.2) into (1.1) yield

p+g-1 _
Sli(i-1a; x2=f(xy,y) @3
=0

Now, interpolating (2.1) at point X=X ;,X 5 and

21

n+= n+g
collocating (2.3) at
X=X, X 1, X 3,X 5,X 7,X,,; lead to a system
n+= n+—=  n+— n+—
8 8 8
of equation written below;
AX =B (2.4)
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1 x, x, x*,  x* x° x° X", y
1 x X x>, X X 4 X° 4 x5 || @ y .
n+§ n+g n+g n+g n+g n+§ n+g a1 n+§
0 O 2 6xX  12x2  20x°  30x!  42x! a f
0 0 2 &, 12, 207, 30x‘, 42|l F| | f,
n+g n+g n+g n+g n+g 3| _ n+g 25)
0 O 2 6x', 12x*, 20x®, 30x*, 42x*,||la, f s
n+g n+g n+g n+g n+g 3
0 0 2 6x, 12¢, 20x°,; 30x*, 42x'. || °| | T 5
n+g n+g n+§ n+§ n+= 3_6 8
0 0 2 6x, 12x*, 20x°, 30x', 42x',|la ) | T,
n+— n+— n+— n+— n+— 8
8 8
0 0 2 6x, 12x%, 20x%, 30x‘, 42’ s

n+1 n+1 n+1

Solving for a'j S in the (2.5) and the resulting value of a‘j S are substituted into (2.1) to yields a continuous implicit hybrid
one step method of the form:

YIX)=a, O+ s (14 o 0)+ 5, 4+ .0+ A0+ 5, 0)+ 5,0 2o
8 8 8 8 8 8
Where
3
o, =——4t
)
1
a£2_5+4t
5, = 1 . 10597 ., 1., 1513, ., 192, ., 3424, 2048, , 2048, ,
2400 282240 2 630 35 525 525 2205
5, - 7729 . 201253 ., 105, 673, ., 1528, . 2944, ., 1048 .
430080 1128960 3 63 105 315 441 27)
5, - 1957 . 6599 ., 14,5, 137, . 12085, 896, . 1024, .
27307200 161280 9 15 75 75 315
B =— 563 o, 1447 1o 145 20904y, 95205y, 248206y, 10247,
$ 307200 161280 15 45 75 225 315
B, = A7 o 3707 ype 104542 1990y 15245y, 2176, 10247,
1761440 1128960 21 63 21 315 441
ﬂlz—iﬂ he o293 pe, Lispe 35204y 187615, 40965, 20487,
67200 282240 6 315 1575 1575 2205
Evaluating (2.6) to obtain the continuous form as,
f
1 7729 1957 563 47 1 f"
Y 3 1 2400 430080 307200 307200 61440 67200 n.l
) 3 17 119 11 1 1 8 9
Y 5 1 - - f 3 (2.8)
ve o s || 1 2 | 2| 2800 2240 2400 1600 1680 8400 e
Y s||-2 3 _w 7 5 1’ 48 1t
"8 57 8400 480 4800 300 6720 1200 || s
You 2 2 37 1621 8137 6017 799 1 fn+z
13440 86016 61440 61440 28672 1120 )| ¢

Differentiating (2.6) once, yields

y(X)=a', (W) +a's O+ B0 O)+ £, 0+ 55 O+ 5 O+ 5, 0+ 5.0) 9

) 8 8 8
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Where
o' =
8
a';=4
8
N 10597 h? +th? — 1513t 2h2 4 768t sH2 _ 3424t a2 4 4096t 52 _ 2048t6hz
282240 210 35 105 175 315
B == 201253 h? 410 t2h? — 2692t h? + 1528t4 h2—5888t5 h? & 1024t h?
3 1128960 63 21 105
fro=——0299 2 1422 548y, 12084y, 179245y, 102440
5 161280 3 15 15 25 45
B = 1447 h? & Et 2h2 _ 1076t3h2 N 952t4 h? _ 4864t 512 4 1024t6 h?
s 161280 5 45 15 75 5
B = 3707 h? _ 10 10 i2p2 796t3h2—760t4h2+4352t5 hz_1024tG h?
5 1128960 7 63 21 105 63
B = 293 h? +1t2h2—1408t3h2+1376t4 hZ_8192t5 2 2048,[6
282240 2 210 105 525 315
(2.10)
Evaluating (2.9) at all points, yields
57287 57287 57287 57287 57287 57287
hy' 967680 967680 967680 967680 967680 967680 f
by " _4 4 923 1261 1513 989 151 253 ; "
Yo _4 4 88200 14112 25200 50400 17640 88200 ned
hy vy, _ 701 1513 5297 131 607 _ 251 f (2.11)
n+§ _| ™8 -4 4 +h? 88200 35280 50400 6300 70560 8820 "3
hy' . Y 5|l-4 4 o 1367 1243 1243 263 73 f
'”+5 —4 4 17640 70560 5040 10080 17640 17640 g
hymz 44 589 1289 10393 1801 8279 1259 fmz
hy' s - 88200 35280 50400 6300 70560 88200 || ¢
You 6841 35291 174877 215107 232837 47609 n+l
1411200 1128960 806400 806400 1128960 1411200
Combining and solving (2.8) and (2.11) simultaneously, yields the explicit schemes as;
1 48281 1217 4051 1147 1601 1391
Y o 11289600 282240 3225600 1612800 4515840 11289600 |( f
g g 17139 4905 201 549 117 _1n "8
V.2 > 1254400 100352 22400 358400 250880 1254400 fnﬁ (2.12)
8 |8 9925 |, | 45625 8875 25 625 125 8
y5 :yn+hyn 5+fn + - f5
g 3 4541584 451584 129025 8064 903168 451584 || g
y 7 7007 14063 31213 26411 49 ~ 343 f,
g 5 230400 92160 230400 460800 5760 230400 || "
Yo 8 379 79 263 143 67 37 [\f,
11025 441 1575 1575 2205 22050
9679 14339 2203 409 851 41
Y 201600 161280 115200 38400 161280 22400 |(f ,
l”*§ 663 3963 1869 381 213 _ 87 "s
AN 22400 17920 12800 12800 17920 22400 fm, (2.13)
, 8 . 295 2125 1325 515 125 25
Voo =Y+, h+ - f
g 8064 10752 4608 4608 10752 8064 s
y 889 4949 28469 10633 21719 49 f
"3 28800 23040 115200 38400 23040 230400 (| "
Yia 103 22 58 s 2108 |(fy,
3150 105 225 225 105 3150
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Properties of the block method

The analysis of the block method, which includes the order, error constant, consistency, zero stability, convergence and region of
absolute stability of the method shall be studied.

Order and error constant

Consider the linear operator defined by ¢ [y( ) h] , Where,

jh") ()
Ay (x):h}= A° Z’ —hd, £ (y,)+bF(Y, )] @)
Expanding Y, and F(Ym) in Taylor series and comparing the coefficients of h gives
Afy(x):hf=Coy(x)+Cy'(x)+--+C,hPy P (x)+ C P2y P (x)+ C, 2y P2 ()4 32)

Definition 3.1: The linear operator L. and the associate block method are said to be of order p if
C,=C =--=C,=C,,=0, C,,#0. C,_, iscalled the error constant and implies that the truncation error

is given byt,,, =C p+2h pr2 y p+3 (X)+ OhP*

L{y (x):hj=Coy(x)+Cyy'(x)+--+C,hPy"(x)+ C,.hPHy " (x)+ C, ,hP 2y P (x)+ -+ @33)

1 ]
3 [§j 1, 48281 . & [ 1217 (1) 4081 (3) 1147 (5) 1601 (7) 1391
Yy, ohy - hy', =y —y, =~ |+ ~ |+ |+ ~|- ©
i 8 " 11289600 ° " & jt 282240\8) " 32256008, 16128008 45158408 ) 11289600

3]
Z[s] Ly 3y A3 Zh“a o[ 4905 [;j_ 201 (g} 549 (gj_ 117 (zj+ 17
2 g™ asaa00"Y & " | "1003s2s) 2240008 ) 35840008 ) 2508808 ) 1254400

J

U 5. . 9925 hi@ [ 45625(1) 8875 (3) 25 625 (7) 125
ZT_y ey yn—m ¥y Z TV e (1)
i = 4515848 ) 129024\8) 8064 s 903168\ 8 ) 451584

j

7\
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(3.4)

Comparing the coefficient ofl in (3.4), according to Skwame et al. (2019b) and Sunday (2018), the method is of order P = 4
and the error constant are given respectively by,

C,.,=|-6.1409x10° 9.1280x10° -3.1537x10° 1.2115x10” 5.9743x10°|

p+

Consistency of the method

Definition 3.2: According to Dahlquist (1956), a block method is said to be consistent if its order is greater than or equal to one.
From the above analysis, it is obvious that our method is consistent.

Zero stability of the method

Definition 3.3: The numerical method is said to be zero-stable, if the roots g, S =1, 2, - -+, Kk of the first characteristics

polynomial p(q) defined by p(q) = det (QA(O) — E) satisfies |qs| <1 and every root satisfies |ZS| =1 have
multiplicity not exceeding the order of the differential equation, (Sunday 2018). The first characteristic polynomial is given by,

10000][00001 g 000 -1]
01000/ (00001 |0 go00 -1
p(a)=/g/0 0 1 0 0|-[0 0 0 0 1|=]0 0 q 0 -1 |=q‘(g-1)
00010/ (00001 |000g -1
0000100001 (0000 g-1
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Thus, solving for qin qe(q —l)givesq =0,0,0,0,1.
Hence, the method is said to be zero stable.

Convergence of the block method

Theorem 3.1: the necessary and sufficient conditions for
linear multistep method to be convergent are that it must be
consistent and zero-stable. Hence our method is convergent
according to Dahlquist (1956).

Region of absolute stability of our method

Definition 3.4: the region of absolute stability is the region of
the complex Z plane, where z = A h for which the method

is absolute stable. To determine the region of absolute
stability of the block method, the methods that compare
neither the computation of roots of a polynomial nor solving
of simultaneous inequalities was adopted. Thus, the method
according to Sunday (2018) is called the boundary locus
method. Applying the method we obtain the region of
absolute stability in as;

0.6

0.4

0.2

0

Im(z)
N

-0.2

-0.4

-0.6

-0.8
0.6

0.4 -0.2 0 0.2

Re(z)

Fig. 1: Region of absolute stability of our method

0.4 0.6

Table 1: Absolute errors for Problem 4.1

Numerical implementation of the method

In this section, we will test the effectiveness and validity of
one-step block method by applying on some second order
highly stiff problems of the form (1.1) without reduction
method. Our result are compared with the existing methods of
Omole & Ogunware (2018), Olanegan et al. (2018), Skwame
et al. (2020), Adeniran & Ogundare (2015) and Adeniran et
al. (2015).

Problem 4.1: Real-life Problem

Cooling of a body

The temperature Y degrees of a body t minutes after being

placed in a certain room, satisfies the differential equation
d?y d d

3 2y+—y=O. By using the substitution Z =—yor

dt° dt dt

otherwise, find Y in terms of tgiven that Y =60 when

t=0 and Yy =35 whent =61In4. Find after how many

minutes the rate of cooling of the body will have fallen below
one degree per minute, giving your answer correct to the
nearest minute. How cool does the body get?

Formulation of the Problem

y'==L,y(0)=60, y'(0)-

With analytic solution
_80,{s), 200

y(x)= 2t

See Omole & Ogunware (2018); Olanegan et al. (2018) and
Skwame et al. (2020).

—@, h=0.1
9

Errorin . .
Error in our Omole & Error in Error in
X Exact Result Computed Result Olaneganet  Skwame et
Method Ogunware | I
(2018) al. (2018) al. (2020)
0.1 59.12576267952015738700 59.12576267952015738700 0.0000e-00 3.5500e-11 7.4764e-06 2.3000e-17
0.2 58.28018626750980633900 58.28018626750980633500 4.0000e-18 4.5800e-11 2.9394e-05 1.7100e-16
0.3 57.46233114762558861700 57.46233114762558860800 9.0000e-18 7.0000e-11 6.4802e-05 4.3700e-16
0.4 56.67128850781193210600 56.67128850781193208900 1.7000e-17 6.5000e-11 1.1279e-05 8.1300e-16
0.5 55.90617933041637530700 55.90617933041637528100 2.6000e-17 3.3300e-11 1.7250e-04 1.2910e-15
0.6 55.16615341541284956400 55.16615341541284952600 3.8000e-17 4.2000e-11 2.4310e-04 1.8640e-15
0.7 54.45038843564751105000 54.45038843564751099900 5.1000e-17 4.3800e-11 3.2383e-04 2.5250e-15
0.8 53.75808902305729847200 53.75808902305729840700 6.5000e-17 1.0700e-10 4.1393e-04 3.2690e-15
0.9 53.08848588484580976200 53.08848588484580968100 8.1000e-17 6.5800e-11 5.1271e-04 4.0890e-15
1.0 52.44083494863438001100 52.44083494863437991400 9.7000e-17 1.6900e-10 6.1951e-04 4.9800e-15
60 Exact Result Computed Result
55
50
45
1
z2 3 4 5 6 Exact Result
7 8 g

Fig. 2: Graphical solution of Problem 4.1.
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Problem 4.2

Consider a highly stiff linear second order problem

y"'+100y'+100y =0, y(0)=0, y'(0)=-1,h=0.1

With exact solutions: y(x) =€

X

See Skwame et al. (2020), Adeniran & Ogundare (2015), Adeniran et al. (2015).

Table 2: Absolute errors for Problem 4.2

- Errorin .
Error in Error in Adeniran & Error in
X Exact Result Computed Result Skwame et Adeniran et
our Method Ogundare
al. (2020) (2015) al. (2015)
0.1 0.90483741803595957316 0.90483741803595952927 4.3890e-17 3.7209e-15 1.0547e-14 2.9000e-09
0.2 0.81873075307798185867 0.81873075307798182897 2.9700e-17 8.7829%-14 1.7764e-14 1.8700e-08
0.3 0.74081822068171786607 0.74081822068171781989 4.6180e-17 1.8840e-12 2.3426e-14 9.9700e-08
0.4 0.67032004603563930074 0.67032004603563925767 4.3070e-17 4.0785e-11 2.7978e-14 5.2510e-08
0.5 0.60653065971263342360 0.60653065971263337424 4.,9360e-17 8.8239%-10 3.1308e-14 2.7480e-07
0.6 0.54881163609402643263 0.54881163609402638382 4.8810e-17 1.9092e-08 3.3973e-14 1.4360e-06
0.7 0.49658530379140951470 0.49658530379140946379 5.0910e-17 4.1306e-07 3.5638e-14 7.4970e-06
0.8 0.44932896411722159143 0.44932896411722154097 5.0460e-17 8.9370e-06 3.6748e-14 3.9150e-05
0.9 0.40656965974059911188 0.40656965974059906128 5.0600e-17 1.9336e-04 3.7304e-14 2.0440e-04
1.0 0.36787944117144232160 0.36787944117144227189 4.9710e-17 4.1836e-03 3.7415e-14 1.0680e-03
1 Exact Result Computed Result

08

0.6

0.4

0.2

a

1
2 3 4 g & Exact Result
7 8 g

Fig. 3: Graphical solution of Problem 4.2

Discussion of Results and Conclusion

The developed block method for solvinghigher order ordinary
differential equation on implicit one-step second derivative
was studied in this research. The method was derived using
interpolation and collocate as a basic function. The properties
of the one-step block method was analyzed. The method was
tested with some numerical examples solved by Omole &
Ogunware (2018), Olanegan et al. (2018), Skwame et al.
(2020), Adeniran & Ogundare (2015), Alkasassheh & Omar
(2015) and it is obvious that our method found to give better
accuracy when compared. The solution graph shown the
convergence of the method in contrast with the exact
solutions.
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